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Cloud Computing Evolution
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Decreasing concern (and control) over stack implementation 
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Bare Metal

Virtual Machines

Functions

Containers



Enter Serverless
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Bare Metal

Serveless

IaaS

PaaS Container Orchestrators

Source: Paul Castro, Serverless Computing Tutorial for WoSC2.



What is Serverless?
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As FAAS (Function-as-a-Service): 

a cloud-native platform
FOR
short-running, stateless computation
AND
event- and (data-driven) applications
WHICH
scales up and down instantly and automatically
AND
charges for actual usage at a millisecond granularity

Source: Paul Castro, Serverless Computing Tutorial for WoSC2.



What is Serverless?
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• Function (“Action”)

• Containerized custom-written application code

• Should include bundled dependencies & binaries

• Memory & execution time limits

• Triggers (“Events”)

• Causes function execution

• Can be another function

• Examples: 

• Upload of a video or image

• Git commit to a repository

• … 

• Resources

• External BaaS/PaaS/FaaS services (object storage, queueing, elastic cache, 

etc.) 



What is Serverless?
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• Function example 
(pandas and numpy are dependencies)

import pandas as pd

import numpy as np

def main(args):

dates = pd.date_range(‘20130101’, periods=2)

df = pd.DataFrame(np.random.randn(2,2), index=dates, 

columns=list(‘AB’))

print(df)

return df.to_dict(‘split’)

In   [12]: df

Out[12]:

A             B

2013-01-01  0.468173  0.64710

2013-01-02 -0.297858 -0.07476



Serverless Pattern
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• An application is architected as a set of business 
logic functions, triggered by discrete events or requests

• Good for microservices, IoT, modest stream processing,  
ML inferencing, etc.



Serverless Pattern
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• Another good example is a typical e-commerce app 
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Example  from https://martinfowler.com/articles/serverless.html
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Serverless Pattern
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• Also, there is tools such as AWS Step Functions that make 
function and workflow orchestration easy

• State Example: Choice

“Choice”: { 
“Type”: “Choice”, 
“Choices”: [

{ 
“Variable”: “$.foo”, 
“NumericEquals”:  1,
“Next”: “FirstTask”

},
{ 

“Variable”: “$.foo”, 
“NumericEquals”:  2,
“Next”: “SecondTask”

}
]}

Choice

NextTask

FirstTask

Task

SecondTask

Start

End



Why is Serverless (Un)attractive?
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On-premise VMs Containers Serverless

Time to provision Weeks-Months Minutes Seconds-minutes Milliseconds

Utilization Low High Higher Highest

Charging granularity CapEx Hours Minutes Interval of 

milliseconds

• The Good

• Removal of the need for a traditional always-on servers 

• Making app development dramatically faster, cheaper, easier

• Highly available and scalable apps with zero administration

• The Bad 

• No in-server state for serverless functions

• Limited computation times and memory can entail app refactoring

• Functions are not directly network-addressable 

Table source: Jason McGee, IBM; Serverless Conference 2017.
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Serverless Data Analytics?

13

• Abide by the functional programming paradigm:

• Embarrassingly parallel functions

• Immutable data through “slow” storage (e.g., S3)

• PyWrent and ExCameraŧ research projects show that functions 

can perform a wider variety of such “map” functions

• PyWrent’s word count job on 83M items is only 17% slower 

than PySpark running on dedicated servers

t Occupy the Cloud: Distributed Computing for the 99%. ACM SOCC 2017

ŧ Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. USENIX NSDI 2017

Mapper 0

Mapper 1

Reducer 

S3



Serverless Data Analytics?
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• One can do a lot of things with a map(function, data)

• Functional, declarative programming models simplify 
consistency and fault tolerance

• Domain experts tend to write imperative programs

• Java, Matlab, C++, R, Python, Fortran, …

• Mismatch between experts’ coding skills and analytics

def addone(x): 

return x + 1

wrenexec= pywren.default_executor()

data = range(1, 10)

futures = wrenexec.map(addone, data)

Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]



Serverless Data Analytics?
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• Imperative programming model with mutable data shall lower 
the barrier to large-scale (scientific) computation

• existing, optimized, single-machine code running on the cloud

from cloudbutton import parallel, prange

@parallel

def summation(A):

s = 0

for i in prange(len(A)):

s += A[i]

return s

Shared  variable
(s)

Explicit parallel loop 
(prange)



Serverless Data Analytics?
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• Large state won’t fit into a single function 

• How to manage large state with functions?

• No direct communication between serverless functions

• Fast access to remote shared state

• Shared state should permit efficient fine-grained updates

• Pockett research project has shown fast ephemeral data 
sharing in serverless analytics workloads is possible

• Sub-millisecond latency 

• Yet, don’t easily support all the use cases

t Pocket: Elastic Ephemeral Storage for Serverless Analytics. USENNIX OSDI 2018
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