
Overview of Serverless Computing

Marc Sánchez Artigas

Table of Contents

• Cloud computing evolution

• What is serverless?

• Serverless patterns

• Serverless data analytics

2

Cloud Computing Evolution

3

Decreasing concern (and control) over stack implementation

In
c

re
a

si
n

g
 f

o
c

u
s

o
n

 b
u

si
n

e
ss

 lo
g

ic
</> </></>

</> </></>

Bare Metal

Virtual Machines

Functions

Containers

Enter Serverless

4

Bare Metal

Serveless

IaaS

PaaS Container Orchestrators

Source: Paul Castro, Serverless Computing Tutorial for WoSC2.

What is Serverless?

5

As FAAS (Function-as-a-Service):

a cloud-native platform
FOR
short-running, stateless computation
AND
event- and (data-driven) applications
WHICH
scales up and down instantly and automatically
AND
charges for actual usage at a millisecond granularity

Source: Paul Castro, Serverless Computing Tutorial for WoSC2.

What is Serverless?

6

• Function (“Action”)

• Containerized custom-written application code

• Should include bundled dependencies & binaries

• Memory & execution time limits

• Triggers (“Events”)

• Causes function execution

• Can be another function

• Examples:

• Upload of a video or image

• Git commit to a repository

• …

• Resources

• External BaaS/PaaS/FaaS services (object storage, queueing, elastic cache,

etc.)

What is Serverless?

7

• Function example
(pandas and numpy are dependencies)

import pandas as pd

import numpy as np

def main(args):

dates = pd.date_range(‘20130101’, periods=2)

df = pd.DataFrame(np.random.randn(2,2), index=dates,

columns=list(‘AB’))

print(df)

return df.to_dict(‘split’)

In [12]: df

Out[12]:

A B

2013-01-01 0.468173 0.64710

2013-01-02 -0.297858 -0.07476

Serverless Pattern

8

• An application is architected as a set of business
logic functions, triggered by discrete events or requests

• Good for microservices, IoT, modest stream processing,
ML inferencing, etc.

Serverless Pattern

9

• Another good example is a typical e-commerce app

DB

Book
Store
Server

Browser

Purchase
DB

Purchase
Function

Browser

Product
DB

Search
Function

API

Gateway

Auth.
service

TRADITIONAL

Example from https://martinfowler.com/articles/serverless.html

SERVERLESS

Serverless Pattern

10

• Also, there is tools such as AWS Step Functions that make
function and workflow orchestration easy

• State Example: Choice

“Choice”: {
“Type”: “Choice”,
“Choices”: [

{
“Variable”: “$.foo”,
“NumericEquals”: 1,
“Next”: “FirstTask”

},
{

“Variable”: “$.foo”,
“NumericEquals”: 2,
“Next”: “SecondTask”

}
]}

Choice

NextTask

FirstTask

Task

SecondTask

Start

End

Why is Serverless (Un)attractive?

11

On-premise VMs Containers Serverless

Time to provision Weeks-Months Minutes Seconds-minutes Milliseconds

Utilization Low High Higher Highest

Charging granularity CapEx Hours Minutes Interval of

milliseconds

• The Good

• Removal of the need for a traditional always-on servers

• Making app development dramatically faster, cheaper, easier

• Highly available and scalable apps with zero administration

• The Bad

• No in-server state for serverless functions

• Limited computation times and memory can entail app refactoring

• Functions are not directly network-addressable

Table source: Jason McGee, IBM; Serverless Conference 2017.

SERVERLESS DATA
ANALYTICS

Serverless Data Analytics?

13

• Abide by the functional programming paradigm:

• Embarrassingly parallel functions

• Immutable data through “slow” storage (e.g., S3)

• PyWrent and ExCameraŧ research projects show that functions

can perform a wider variety of such “map” functions

• PyWrent’s word count job on 83M items is only 17% slower

than PySpark running on dedicated servers

t Occupy the Cloud: Distributed Computing for the 99%. ACM SOCC 2017

ŧ Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. USENIX NSDI 2017

Mapper 0

Mapper 1

Reducer

S3

Serverless Data Analytics?

14

• One can do a lot of things with a map(function, data)

• Functional, declarative programming models simplify
consistency and fault tolerance

• Domain experts tend to write imperative programs

• Java, Matlab, C++, R, Python, Fortran, …

• Mismatch between experts’ coding skills and analytics

def addone(x):

return x + 1

wrenexec= pywren.default_executor()

data = range(1, 10)

futures = wrenexec.map(addone, data)

Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Serverless Data Analytics?

15

• Imperative programming model with mutable data shall lower
the barrier to large-scale (scientific) computation

• existing, optimized, single-machine code running on the cloud

from cloudbutton import parallel, prange

@parallel

def summation(A):

s = 0

for i in prange(len(A)):

s += A[i]

return s

Shared variable
(s)

Explicit parallel loop
(prange)

Serverless Data Analytics?

16

• Large state won’t fit into a single function

• How to manage large state with functions?

• No direct communication between serverless functions

• Fast access to remote shared state

• Shared state should permit efficient fine-grained updates

• Pockett research project has shown fast ephemeral data
sharing in serverless analytics workloads is possible

• Sub-millisecond latency

• Yet, don’t easily support all the use cases

t Pocket: Elastic Ephemeral Storage for Serverless Analytics. USENNIX OSDI 2018

THANK YOU!

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 825184.

